Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Mathias S. Wickleder

Institut für Anorganische Chemie, Universität zu Köln, Greinstr. 6, D-50939 Köln, Germany

Correspondence e-mail: mathias.wickleder@uni-koeln.de

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (Se–O) = 0.004 Å R factor = 0.031 wR factor = 0.072 Data-to-parameter ratio = 14.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Sodium selenite, Na₂SeO₃

The title compound, Na₂SeO₃, contains two crystallographically different Na⁺ ions, Na1 and Na2. Na1 is coordinated by four monodentate and one chelating SeO₃²⁻ group, while two monodentate and two chelating selenite ions are attached to Na2. For both Na⁺ ions, a strongly distorted octahedral coordination results. The [NaO₆] octahedra are linked *via* common edges. The SeO₃²⁻ ion shows a pyramidal shape, due to the lone electron pair of the Se atom. Received 16 October 2002 Accepted 21 October 2002 Online 25 October 2002

Comment

Recently, Helmholdt et al. (1999) solved the crystal structure of Na₂SeO₃ from powder diffraction data. Although the main features of the crystal structure are correctly described, there are some unusual bond lengths reported, especially for the SeO_3^{2-} ion. The Se-O distances vary from 1.676 (11) to 1.779 (14) Å, but there is no structural reason for such a large range. In order to obtain more precise results, we decided to perform a single-crystal structure investigation. It turned out that well shaped single crystals are best obtained from the reaction of Na₂O and SeO₂. According to the structure determination, Na₂SeO₃ is isotypic with Ag₂SeO₃ (Okkonen et al., 1994) and contains two crystallographically different Na⁺ ions. Na1 is surrounded by four monodentate and one chelating selenite ion (Fig. 1). Two chelating and two monodentate SeO_3^{2-} groups are attached to Na2 (Fig. 1). For both Na⁺ ions, this leads to strongly distorted octahedra as coordination polyhedra. The Na-O distances within the octahedra range from 2.346 (4) to 2.664 (4) Å (Table 1). The [NaO₆] octahedra are linked via common edges, to form a three-dimensional network (Fig. 2). The SeO_3^{2-} ion exhibits the typical pyramidal shape, due to the lone electron pair of the Se atom. The O-Se-O angles are between 100.4 (2) and 102.7 (2)°. In contrast to previously reported results, the Se-O distances are very similar, with a range from 1.685 (4) to 1.705 (4) Å. The SeO₃²⁻ ion is coordinated by five Na1 and four Na2 ions.

Experimental

A mixture of the finely powdered oxides Na₂O and SeO₂ (molar ratio 1:1) was sealed in a gold ampoule, which was placed in a silica tube. The tube was heated to 573 K with a resistance furnace. After 24 h, the temperature was raised to 773 K, followed by slow cooling (5 K h⁻¹) to 303 K. The slightly moisture-sensitive, colourless crystals were handled in an argon-filled glove-box, and an appropriate specimen was mounted in a glass capillary for the X-ray investigation.

 \odot 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

Coordination of Na1 and Na2 in the crystal strucure of Na_2SeO_3 . Note that some of the selenite groups act as chelating ligands. Displacement ellipsoids are drawn at the 90% probability level.

Crystal data

Na₂SeO₃ $M_r = 172.94$ Monoclinic, $P2_1/c$ a = 4.9089 (13) Å b = 10.0072 (15) Å c = 6.8535 (15) Å $\beta = 91.11$ (3)° V = 336.61 (13) Å³ Z = 4

Data collection

Stoe IPDS-I diffractometer φ scans Absorption correction: numerical with crystal-shape optimization (*X-SHAPE*; Stoe & Cie, 1999) $T_{min} = 0.115$, $T_{max} = 0.291$ 3856 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.072$ S = 1.01808 reflections 55 parameters
$$\begin{split} D_x &= 3.413 \text{ Mg m}^{-3} \\ \text{Mo } K\alpha \text{ radiation} \\ \text{Cell parameters from 2000} \\ \text{reflections} \\ \theta &= 3.0-28.0^{\circ} \\ \mu &= 11.22 \text{ mm}^{-1} \\ T &= 293 \text{ (2) K} \\ \text{Column, colourless} \\ 0.25 &\times 0.17 \times 0.11 \text{ mm} \end{split}$$

808 independent reflections 571 reflections with $I > 2\sigma(I)$ $R_{int} = 0.069$ $\theta_{max} = 28.1^{\circ}$ $h = -6 \rightarrow 6$ $k = -12 \rightarrow 13$ $l = -9 \rightarrow 8$

$$\begin{split} w &= 1/[\sigma^2(F_o{}^2) + (0.0349P)^2] \\ \text{where } P &= (F_o{}^2 + 2F_c{}^2)/3 \\ (\Delta/\sigma)_{\text{max}} &< 0.001 \\ \Delta\rho_{\text{max}} &= 0.90 \text{ e } \text{\AA}{}^{-3} \\ \Delta\rho_{\text{min}} &= -1.32 \text{ e } \text{\AA}{}^{-3} \end{split}$$

Figure 2

Perspective view of the crystal structure of Na_2SeO_3 along [100]. The [NaO₆] octahedra are connected *via* common edges.

Table 1

Selected geometric parameters (Å, °).

Na1-O3 ⁱ	2.347 (4)	Na2-O1 ^{iv}	2.438 (4)
Na1–O3 ⁱⁱ	2.373 (4)	Na2-O2 ^{vi}	2.473 (5)
Na1-O2	2.408 (4)	Na2-O1 ^v	2.516 (4)
Na1–O1 ⁱⁱⁱ	2.518 (5)	Na2-O1	2.664 (4)
Na1–O1 ^{iv}	2.650 (4)	Se1-O3	1.685 (4)
Na1–O2 ⁱⁱ	2.657 (5)	Se1-O1	1.703 (4)
Na2-O3 ^v	2.354 (5)	Se1-O2	1.705 (4)
Na2-O2	2.391 (5)		
O3-Se1-O1	102.22 (18)	O1-Se1-O2	102.66 (18)
O3-Se1-O2	100.35 (18)		

Symmetry codes: (i) $x - 1, \frac{3}{2} - y, \frac{1}{2} + z$; (ii) x - 1, y, z; (iii) $1 - x, y - \frac{1}{2}, \frac{1}{2} - z$; (iv) 1 - x, 2 - y, 1 - z; (v) 2 - x, 2 - y, 1 - z; (vi) $x, \frac{3}{2} - y, \frac{1}{2} + z$.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97.

References

- Brandenburg, K. (2001). *DIAMOND*. Version 2.1e. Crystal Impact GbR, Bonn, Germany.
- Helmholdt, R. B., Sonneveld, E. J. & Schenk, H. (1999). Z. Kristallogr. 214, 151–153.
- Okkonen, P., Hiltunen, L., Koskenlinna, M. & Niinistö, L. (1994). Acta Chem. Scand. 48, 857–860.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Stoe & Cie (1999). X-SHAPE. Version 1.06. Stoe and Cie, Darmstadt, Germany.
- Stoe & Cie (2001). X-AREA (MainMenu Version 1.15) and X-RED (Version 1.22). Stoe & Cie GmbH, Darmstadt, Germany.